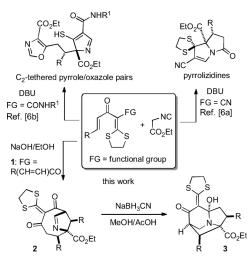


Heterocycles


DOI: 10.1002/ange.201303604

Facile [7C+1C] Annulation as an Efficient Route to Tricyclic Indolizidine Alkaloids**

Xianxiu Xu, Lingjuan Zhang, Xiqing Liu, Ling Pan,* and Qun Liu*

The indolizidine skeleton is one of the most important structural motifs found in numerous biologically active molecules.[1-4] The development of efficient methods for the synthesis of indolizidine alkaloids has been the subject of intense research. [1-4] Recently, we have been devoted to the research of heterocyclizations using alkenoyl ketene dithioacetals as five-carbon 1,5-dielectrophiles^[5,6] and ethyl isocyanoacetate as both a double Michael donor and a 1,3-dipole in a [5C+1C] annulation process for the construction of complex heterocyclic systems (Scheme 1).^[6] As part of our studies in this area, we herein report a new synthetic strategy for the construction of the tricyclic indolizidine alkaloids 3 by an unprecedented [7C+1C] annulation to deliver the 8azabicyclo[5.2.1]dec-8-enes 2 from the easily available dialkenoyl ketene dithioacetals 1 as C₇ 1,7-dielectrophiles (Scheme 1).[5-8]

Initially, the reaction of the dialkenoyl ketene dithioacetal **1a** with ethyl isocyanoacetate was investigated to evaluate

Scheme 1. Heterocyclizations based on alkenoyl ketene dithioacetals.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201303604.

a tandem process involving a [7C+1C] annulation with $\bf 1a$ as a C_7 1,7-dielectrophile (Table 1). It was found that treatment

Table 1: Screening of reaction conditions.

Entry	Solvent	Base (equiv)	<i>T</i> [°C]	t [h]	Yield [%] ^[a]	
					2a	4a
1	THF	NaOH (1.0)	RT	0.5	17	71
2	DMF	NaOH (1.0)	RT	4	57	35
3	CH_3CN	NaOH (1.0)	RT	11	65	30
4	EtOH	NaOH (1.0)	RT	11	93	-
5	EtOH	NaOH (1.0)	45	4	92	-
6	EtOH	NaOH (0.1)	45	9	90	_
7 ^[b]	EtOH	NaOH (0.05)	45	24	24	_
8	EtOH	NaOH (0.3)	45	7	90	_
9	EtOH	DBU (0.1)	45	15	83	10
10 ^[c]	EtOH	K_2CO_3 (0.1)	45	24	71	_

[a] Yields of isolated products. [b] Substrate 1a was recovered in 70% yield. [c] Substrate 1a was recovered in 20% yield. DMF = N, N-dimethylformamide, THF = tetrahydrofuran.

of the mixture of $\mathbf{1a}$ (1.0 mmol) and ethyl isocyanoacetate (1.1 equiv) with NaOH (1.0 equiv) in THF at room temperature for 0.5 hours gave the fused oxazoline $\mathbf{4a}^{[8a]}$ in 71% yield and 8-azabicyclo[5.2.1]dec-8-ene $\mathbf{2a}$ in 17% yield (entry 1). According to our previous reports, [5a,b,6] the formation of $\mathbf{2a}$ would involve a [7C+1C] annulation process.

Although synthetic approaches to five- and six-membered carbocycles are legion, encompassing both cyclization and cycloaddition approaches, the synthesis of medium-sized carbocycles from acyclic precursors is quite challenging because of unfavorable entropic and enthalpic factors which preclude ring formation. [9] For the construction of eightmembered carbocycles, transition-metal-catalyzed/mediated higher-order cycloadditions involving [2+2+2+2], [4+4], [4+2+2], [5+2+1], and [6+2] [9a] ring-closing metathesis, [9b] and related intramolecular reactions have been reported. [9,10] However, the synthesis of medium- and large-sized ring compounds from C₇ and larger carbon building blocks remains a formidable challenge. [9a,10,11]

To the best of our knowledge, the synthesis of 2a represents the first example involving the construction of an eight-membered carbocycle from simple acyclic C_7 precursors. [9-11] Fortunately, optimization of the reaction conditions allowed us to obtain 2a in excellent yield, where the mixture of 1a and ethyl isocyanoacetate was treated with a catalytic

^[*] Prof. Dr. X. Xu, L. Zhang, X. Liu, Dr. L. Pan, Prof. Dr. Q. Liu Department of Chemistry, Northeast Normal University Changchun, 130024 (China) E-mail: panl948@nenu.edu.cn liuqun@nenu.edu.cn

^[***] Financial supports of this research provided by the NNSFC (21072027, 21172030, 21272034 and 21202015) and the Fundamental Research Funds for the Central Universities (11SSXT142) are greatly acknowledged.

amount of NaOH in ethanol (Table 1, entry 6). Under identical reaction conditions as above, $\bf 2a$ was produced in relatively lower yields with DBU (DBU = 1,8-diazabicyclo-[5.4.0]undec-7-ene) and K_2CO_3 as the catalysts (entries 9 and 10). In comparison, much lower yields of $\bf 2a$ were obtained when DMF or acetonitrile was used as the solvent (entries 2 and 3 versus 4 and 5).

With the optimal reaction conditions (Table 1, entry 6) in hand, the scope of the tandem [7C+1C] annulation/intramolecular cyclization reaction with dialkenoyl ketene dithioacetals (1) as C_7 1,7-dielectrophiles was investigated and the results are summarized in Table 2. It was observed that the reactions of ethyl isocyanoacetate with symmetrical C_7 1,7-dielectrophiles (1) having electron-deficient aryl groups (entries 1, 2, 4 and 5), phenyl (entry 6), electron-rich aryl groups (entries 7–11), and heteroaryl groups (entries 12–14) at the 1,7-positions (β positions of the enone moiety) can afford the corresponding 8-azabicyclo[5.2.1]dec-8-enes 2 in high to excellent yields. It is important to note that all the above reactions (except for 1c; entry 3) proceed in a highly

Table 2: Synthesis of 8-azabicyclo[5.2.1]dec-8-enes 2.

$$(R^{1}) R \xrightarrow{\begin{array}{c} 0 \\ 1 \\ 3 \\ 5 \\ 5 \\ 7 \\ R \\ R^{2} \end{array}} \xrightarrow{\begin{array}{c} CN \\ R \\ R^{2} \end{array}} \xrightarrow{\begin{array}{c} CO_{2}Et \\ NaOH (0.1 \ equiv) \\ EtOH/45^{\circ}C \end{array}} \xrightarrow{\begin{array}{c} (R^{1}) R \\ R \\ R^{2} \end{array}} \xrightarrow{\begin{array}{c} 0 \\ S \\ S \\ R \\ R^{2} \end{array}} \xrightarrow{\begin{array}{c} N \\ R \\ R^{2} \end{array}} \xrightarrow{\begin{array}{c} 0 \\ R^{2} \end{array}$$

Entry	1	R or R ¹ /R ²	n	t [h]	Yield [%] ^[a]	
1	1a	4-CIC ₆ H ₄	1	9	2a	90
2	1 b	3-CIC ₆ H ₄	1	13	2 b	90
3	1 c	2-CIC ₆ H ₄	1	20	2c	$O_{[P]}$
4	1 d	4-BrC ₆ H ₄	1	9	2 d	91
5	1 e	4-FC ₆ H ₄	1	5	2 e	85
6	1 f	Ph	1	12	2 f	88
7	1 g	$4-tBuC_6H_4$	1	17	2g	91 ^[c]
8	1 h	4-CH ₃ OC ₆ H ₄	1	36	2 h	89
9	1i	3-CH ₃ OC ₆ H ₄	1	21	2i	88
10	1j	$4-CH_3C_6H_4$	1	31	2j	90
11	1 k	$3-CH_3C_6H_4$	1	34	2 k	90
12	11	2-thienyl	1	24	21	72 ^[c]
13	1 m	2-furyl	1	25	2 m	80 ^[c]
14	1 n	3-pyridyl	1	5	2 n	85
15	10	2-ferrocenyl	1	7	2 o	65 ^[d]
16	1 p	$4-CIC_6H_4/2-CIC_6H_4$	1	34	2 p/2 p'	73 ^[e,f]
17	1 q	Me/4-ClC ₆ H ₄	1	10	2 q/2 q′	95 ^[g]
18	1r	<i>t</i> Bu	1	36	2r	$O_{[h]}$
19	1 s	4-CIC ₆ H ₄	2	12	2 s	90
20	1t	$4-CH_3C_6H_4$	2	35	2t	89
21	1 u	4-CH3OC6H4	2	40	2 u	82
22	1 v	$4-CH_3C_6H_4$	3	46	2 v	68

[a] Yields of isolated products. [b] 80°C. [c] NaOH (0.3 equiv). [d] DBU (1.0 equiv), 80°C. [e] A mixture of diastereomers in a ratio of about 15:1. [f] NaOH (1.0 equiv), 80°C. [g] A mixture of diastereomers in a ratio of about 1:1. [h] NaOH (1.0 equiv) or DBU (1.0 equiv), 80°C.

diastereoselective manner. In a few cases, such as for 11 or 1m, a higher NaOH loading (0.3 equiv) is required to get satisfactory results (entries 12 and 13). In addition, the 1,7-dielectrophiles 1 having electron-deficient aryl groups at the 1,7-positions appear to be more reactive than those bearing electron-rich aryl groups (entries 1, 2, 4 and 5 versus entries 7–11).

It was noted that substrates 1a and 1b bearing a chlorine atom at either the para or meta position of each phenyl ring resulted in the desired products 2a and 2b, respectively, in excellent yields (Table 2, entries 1 and 2). However, substrate 1c, having a chlorine atom at the ortho position of each phenyl ring, was inert under identical reaction conditions even at 80 °C for 20 h (entry 3), thus indicating the sensitivity of the reaction to steric hindrance. Indeed, no reaction was detectable for the substrate 1r bearing bulky tert-butyl groups at the 1,7-positions (entry 18). In contrast, the reaction of the substrate 10 bearing two ferrocenyl groups at the electrophilic 1,7-positions gave the desired product 20 in good yield (entry 15).[12] To further examine the steric effect, nonsymmetrical substrates 1p and 1q were subjected to the reactions. As a result, 2p and 2p' were obtained as a mixture of diastereomers in high combined yield in a ratio of about 15:1 when the nonsymmetrical substrate 1p, bearing two chlorine atoms at the para- and ortho-positions of the 1,7-phenyl groups, respectively, was used (entry 16). The structure of the dominant product 2p was further confirmed by two-dimensional HMBC (heteronuclear multiple bond correlation) spectroscopy (for details, see the Supporting Information). In comparison, 2q and 2q' in a ratio of about 1:1 were obtained in excellent combined yield from the reaction of 1q with ethyl isocyanoacetate (entry 17). In contrast, the ring sizes of the dithioacetal moiety of substrates 1s-v seemed to have no significant effect on the formation of the eightmembered products **2s-v** (entries 19–22).

On the basis of the above results (Table 2) together with our previous observations, [6,13] a possible mechanism for the formation of 2 from the symmetrical dialkenoyl ketene dithioacetals 1 is proposed in Scheme 2. The overall process would involve the diastereoselective double Michael addition ([7+1] annulation) of the active methylene of ethyl isocyanoacetate to the 1,7-dielectrophilic 1 under basic conditions to provide the enolate intermediate A. Intramolecular cyclization of A through C-C bond formation at the isocyanide carbon atom (B) and subsequent protonation would give 2 (Scheme 2). [6a,13] This mechanism proves to be efficient to support the reactions of ethyl isocyanoacetate with nonsymmetrical dialkenoyl ketene dithioacetals as in the case of **1p** (Table 2, entry 16). In this case, the intermediate Ap should be formed through a double Michael addition by successive nucleophilic attack first at the less hindered C1 instead of the more hindered C7 as indicated in the dashed box in Scheme 2 (R^s = less hindered substitutes; R^l = more hindered substitutes). Thus, it is easy to understand not only why **2p** was formed dominantly (Table 2, entry 16), but also why 1c and 1r were inert to the [7+1] annulation (Table 2, entries 3 and 18). We can also understand why 2q and 2q' were obtained as a mixture of diastereomers in a ratio of about 1:1 (Table 2, entry 17), that is, because of the equal

Scheme 2. Proposed mechanism for formation of 2 and 3.

chance of the conjugate addition of ethyl isocyanoacetate at both of C1 and C7 carbon atoms of **1**.

Unlike the synthesis of pyrrolizidines and C2-tethered pyrrole/oxazole pairs (Scheme 1) in which [5C+1C] annulation intermediates can be obtained, [6,13] the synthesis of 2 does not result in an intermediate corresponding to the [7C+1C] annulation of 1a with ethyl isocyanoacetate under optimal reaction conditions (Table 1, entry 6), even at a temperature of 0°C. To the best of our knowledge, no report has been published on the [7C+1C] annulation using a seven-carbon acyclic precursor. [9-11] Asokan and co-workers observed that the two cinnamoyl moieties of the dicinnamoyl ketene dithioacetal 1f (Scheme 2 and Table 2, entry 6) are aligned in parallel and close to each other in the crystal structure because of the existence of the cyclic dithiolane moiety and the push-pull nature of the α -oxo ketene dithioacetals.^[5,14] This structural feature may be important in determining the tendency of the [7+1] annulation because of the proper conformation of the dicinnamoyl ketene dithioacetals 1 for [7+1] annulation. Therefore, the tandem [7+1] annulation/ intramolecular cyclization cascade provides an efficient route to eight-membered carbocycles[9-11] and a novel tandem cyclization for a highly efficient use of the reactive sites of both dialkenoyl ketene dithioacetals and methyl isocyanides.^[5-8,15,16]

The tandem process mentioned above represents a very simple and efficient methodology for the construction of 8-azabicyclo[5.2.1]dec-8-enes (2) where the starting materials are simple acyclic precursors and the reaction is highly atomeconomic. To highlight the synthetic potential of 2, the transformation of 2 into tricyclic indolizidine alkaloids (3; Scheme 1) through a transannular attack of the imine nitrogen atom on the nearby carbonyl carbon atom of 2 was envisioned. Treatment of the selected 8-azabicyclo-[5.2.1]dec-8-enes 2a, 2g, 2h, 2n, and 2o with NaBH₃CN (10 equiv) led to the formation of the corresponding tricyclic indolizidine derivatives [3a (R = 4-ClC₆H₄, 98%), 3g (R = 4-tBuC₆H₄, 94%), 3h (R = 4-CH₃OC₆H₄, 94%), 3n (R = 3-

pyridyl, 99%), 3σ (R = 2-ferrocenyl, 96%)]. [12] Clearly, the formation of 3 would involve the selective reduction of the imine bond of 2 to the amine intermediate C followed by the nucleophilic attack of the amine nitrogen atom onto the nearby carbonyl group in a regiospecific fashion (Scheme 2). [6a]

In conclusion, we have developed an efficient and practical [7C+1C] annulation strategy from the reaction of ethyl isocyanoacetate with dialkenoyl ketene dithioacetals as C_7 1,7-dielectrophiles. This reaction features high to excellent yields, mild reaction conditions, high diastereoselectivity in most cases, perfect atom economy, readily available starting materials, and no need for transition metals. Furthermore, a series of tricyclic indolizidine alkaloids were prepared in excellent yields in a two-step procedure based on the novel and efficient [7C+1C] annulation strategy. This [7C+1C] annulation strategy opens a way to explore the construction of medium-sized rings from easily available acyclic building blocks.

Received: April 28, 2013 Revised: June 4, 2013 Published online: July 2, 2013

Keywords: annulation · heterocycles · medium-ring compounds · Michael addition · synthetic methods

- For recent reviews, see: a) J. P. Michael, Nat. Prod. Rep. 2008, 25, 139–165; b) S. M. Weinreb, Chem. Rev. 2006, 106, 2531–2549;
 c) A. Brandi, F. Cardona, S. Cicchi, F. M. Cordero, A. Goti, Chem. Eur. J. 2009, 15, 7808–7821; d) U. Pässler, H.-J. Knölker, Alkaloids: Chem. Biol. 2011, 70, 79–151.
- [2] For selected recent reports on the synthesis of indolizidine alkaloids, see: a) H. Wong, E. C. Garnier-Amblard, L. S. Liebeskind, J. Am. Chem. Soc. 2011, 133, 7517-7527; b) A. Kapat, E. Nyfeler, G. T. Giuffredi, P. Renaud, J. Am. Chem. Soc. 2009, 131, 17746-17747; c) F. A. Davis, B. Yang, J. Am. Chem. Soc. 2005, 127, 8398-8407; d) R. T. Yu, E. E. Lee, G. Malik, T. Rovis, Angew. Chem. 2009, 121, 2415-2418; Angew. Chem. Int. Ed. 2009, 48, 2379-2382; e) H.-J. Knölker, S. Agarwal, Tetrahedron Lett. 2005, 46, 1173-1175.
- [3] a) G. Lapointe, K. Schenk, P. Renaud, Org. Lett. 2011, 13, 4774–4777; b) S. Dutta, H. Abe, S. Aoyagi, C. Kibayashi, K. S. Gates, J. Am. Chem. Soc. 2005, 127, 15004–15005; c) H. Abe, S. Aoyagi, C. Kibayashi, J. Am. Chem. Soc. 2005, 127, 1473–1480; d) T. Shibuguchi, H. Mihara, A. Kuramochi, S. Sakubara, T. Ohshima, M. Shibasaki, Angew. Chem. 2006, 118, 4751–4753; Angew. Chem. Int. Ed. 2006, 45, 4635–4637.
- [4] a) S. V. Tsukanov, D. L. Comins, Angew. Chem. 2011, 123, 8785 8787; Angew. Chem. Int. Ed. 2011, 50, 8626 8628; b) D. Yang, G. C. Micalizio, J. Am. Chem. Soc. 2012, 134, 15237 15240; c) A. B. Smith III, D.-S. Kim, J. Org. Chem. 2006, 71, 2547 2557.
- [5] For reviews on ketene dithioacetal chemistry, see: a) L. Pan, X. Bi, Q. Liu, *Chem. Soc. Rev.* 2013, 42, 1251–1286; b) L. Pan, Q. Liu, *Synlett* 2011, 1073–1080; c) H. Junjappa, H. Ila, C. V. Asokan, *Tetrahedron* 1990, 46, 5423–5506; d) R. K. Dieter, *Tetrahedron* 1986, 42, 3029–3096.
- [6] a) J. Tan, X. Xu, L. Zhang, Y. Li, Q. Liu, Angew. Chem. 2009, 121, 2912–2916; Angew. Chem. Int. Ed. 2009, 48, 2868–2872;
 b) Y. Li, X. Xu, J. Tan, C. Xia, D. Zhang, Q. Liu, J. Am. Chem. Soc. 2011, 133, 1775–1778.

- [7] For a review on the synthetic utility of isocyanoacetate derivatives, see: A. V. Gulevich, A. G. Zhdanko, R. V. A. Orru, V. G. Nenajdenko, *Chem. Rev.* 2010, 110, 5235-5331.
- [8] a) L. Zhang, X. Xu, J. Tan, L. Pan, W. Xia, Q. Liu, Chem. Commun. 2010, 46, 3357 – 3359; b) J. Liu, Z. Fang, Q. Zhang, Q. Liu, X. Bi, Angew. Chem. 2013, 125, 7091 – 7095; Angew. Chem. Int. Ed. 2013, 52, 6953 – 6957.
- [9] For recent reviews on the construction of eight-membered carbocycles, see: a) Z.-X. Yu, Y. Wang, Y. Wang, Chem. Asian J. 2010, 5, 1072–1088; b) M. Tori, R. Mizutani, Molecules 2010, 15, 4242–4260; c) L. Yet, Chem. Rev. 2000, 100, 2963–3007.
- [10] For selected recent reports, see: a) Y. Oonishi, A. Hosotani, Y. Sato, J. Am. Chem. Soc. 2011, 133, 10386-10389; b) Y. Oonishi, A. Hosotani, Y. Sato, Angew. Chem. 2012, 124, 11716-11719; Angew. Chem. Int. Ed. 2012, 51, 11548-11551; c) H. Clavier, K. Le Jeune, I. de Riggi, A. Tenaglia, G. Buono, Org. Lett. 2011, 13, 308-311; d) Y. Liang, X. Jiang, Z.-X. Yu, Chem. Commun. 2011, 47, 6659-6661; e) J. M. Robinson, S. F. Tlais, J. Fong, R. L. Danheiser, Tetrahedron 2011, 67, 9890-9898; f) C. Zhu, X.
- Zhang, X. Lian, S. Ma, *Angew. Chem.* **2012**, *124*, 7937–7940; *Angew. Chem. Int. Ed.* **2012**, *51*, 7817–7820; g) D. Crépin, J. Dawick, C. Aissa, *Angew. Chem.* **2010**, *122*, 630–633; *Angew. Chem. Int. Ed.* **2010**, *49*, 620–623.
- $[11] \ Z.-K.\ Yao,\ J.\ Li,\ Z.-X.\ Yu,\ Org.\ Lett.\ \textbf{2011},\ 13,\ 134-137.$
- [12] CCDC 917519 (20) and 916966 (30) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- [13] X. Xu, Y. Li, Y. Zhang, L. Zhang, L. Pan, Q. Liu, Adv. Synth. Catal. 2011, 353, 1218–1222.
- [14] B. K. Joseph, B. Verghese, C. Sudarsanakumar, S. Deepa, D. Viswam, P. Chandran, C. V. Asokan, *Chem. Commun.* 2002, 736–737.
- [15] L.-F. Tietze, G. Brasche, K. M. Gericke, *Domino Reactions in Organic Synthesis*, Wiley-VCH, Weinheim, 2006.
- [16] A. V. Lygin, A. de Meijere, Angew. Chem. 2010, 122, 9280 9311; Angew. Chem. Int. Ed. 2010, 49, 9094 – 9124.